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Two-photon transitions in positronium 

by G. WILSE ROBINSON 
Picosecond and Quantum Radiation Laboratory, Texas Tech University, Lubbock, 

Texas 79409, U.S.A. 

and A. QUATTROPANI 
Institut de Physique Theorique, Ecole Polytechnique FBderale de Lausanne, CH-1015 

Lausanne, Switzerland 

Difficulties caused by hadronic size effects encountered in quantum electrody- 
namics (QED) calculations of Lamb shifts in the hydrogen atom (H) are missing in 
positronium (Ps), a purely leptonic system. Precision measurements of the hyperfine 
structure in Ps thus provide less ambiguous tests of QED. A review of this problem, 
leading up to present-generation two-photon absorption experiments, is presented. 
For future investigations of Ps with two-colour lasers, calculations of the 1 3S1-23S1 
and 13S1-33S, two-photon transition amplitudes and probabilities are carried out. 
A new feature is the occurrence of a 'destructive interference profile' (DIP) in the 
n = 3 pre-resonance region. 

1. Background 
Positronium is the electron-positron bound state Cepef]. A review (Rich 1981) of 

the experimental aspects of this problem through 1979 provides an early history of Ps 
research and its relationship to QED. The importance of Ps and muonium 
(Badertscher et al. 1984, Oram et al. 1984, Owen 1984) has grown in recent years 
because of theoretical difficulties encountered in Lamb-shift calculations, attributed to 
finite-size effects of the proton (Borie 1981, Lundeen and Pipkin 1981, Mohr 1975). 
Comparison of theory and experiment for H indicates a residual 40 p.p.m. error, which 
is not easily resolvable and which blocks hope of checking QED beyond first order in 
the Lamb shift. On the other hand, corrections to second order of the fine-structure 
splitting in the ground state of Ps have already provided an important test of QED 
(Lepage 1977, Caswell and Lepage 1978, 1979, Caswell et al. 1977). 

As in H, the 1 s  ground state of Ps is composed of a triplet 13S, and a singlet llSo. 
The lifetime of 1'S0 Ps is about 125ps through annihilation primarily into two y- 
photons, while 13S, annihilates primarily into three ys with a lifetime of about 14011s. 
These states are split in zero order by -203.4GHz, which is about 143 times larger 
than the hyperfine splitting (hfs) in H (1420.4 MHz). A part of this factor is caused by the 
e f / H  magnetic moment ratio of 658, reduced by 23 because of the increased distance 
scale. Added to these contributions is a term, ia4mc2 (where mcz is the rest-mass energy 
and CI is the fine structure constant) in the 13S1 energy resulting from the zero-order 
virtual annihilation and re-creation of Ps. The latter term ( N 87.6 GHz) accounts for 
about $ of the total splitting. On top of the zero-order contributions is a multitude of 
higher-order radiative corrections, calculated thus far to order C I ~ ~ C ~ .  A chart of these 
contributions in diagram form is provided in Rich's review (1981). 

Two-photon spectroscopy is capable of determining splittings in the excited states 
of Ps (Fulton and Martin 1954). The principal quantum number spectrum of Ps is 
equivalent to that of H, except that it is compressed by a factor of two because of the 
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308 G. W Robinson and A. Quattropani 

smaller reduced mass. The ionization potential of Ps is 6.8eV, placing the 'Lyman 
series' in the near ultraviolet. 

The n = 2 fine structure of Ps is far different from that of H, being similar to that in 
He with distinct singlet and triplet manifolds. (Compare figures 13 and 14 of Bethe and 
Salpeter (1957).) Typical splittings between states of different angular momentum J are 
of the order of 10 GHz. The degeneracy with respect to J ,  removed in H by the Lamb 
shift and hfs interaction, is removed by LS coupling in n > 2 Ps. The n = 3 fine-structure 
splittings are smaller than those of n=2 by a factor of about (*)3 (Ferrell 1951). The 
lifetimes of these states depend on the probabilities of y-annihilation and ordinary 
radiation. The latter transitions in Ps are governed by H-atom intensity formulas 
(Bethe and Salpeter 1957), with appropriate scaling. 

The controlling selection rules for y-annihilation depend on the charge conjugation 
operator C (Michel 1952, Wolfenstein and Ravenall 1952). In lowest order, the Ps 
eigenfunctions $(n, 1, s) as well as the eigenfunctions $(Ny) are eigenstates of C with 
eigenvalues (- 1)'" and (- l)N, respectively. To conserve C in a transition, 
(n, 1, s)+(Ny), (- l ) l f s  and (- l)N must be the same, and momentum conservation 
requires N > 2. Thus, even J-states annihilate through the two-y process, odd J-states 
through the much slower three-y process. The lifetimes for annihilation also depend 
strongly on the spatial overlap of e- and e+  in the Ps eigenfunction, S-states 
annihilating 2 lo3 times faster than comparable P-states. 

2. Introduction 
A first series of experiments on the 13S,-23S1 two-photon absorption using two 

equal frequencies, plus a sequential third photon for ionization detection, has been 
successfully performed by Chu et al. (1984). These experiments set a high standard for 
multi-photon experiments on atomic and molecular beams or 'sprays' under ultra-high 
vacuum conditions. The experiments also nicely illustrate inherent interconnections 
among diverse fields of physics and technology. 

In the experiments of Chu et al. (1984), 5&1OOPs atoms in a 10-8s burst were 
thermalized in A1 in an ultra-high vacuum system. Counter-propagating pulses of 
width At w 10-'s from an amplified Xe/Cl pumped dye-laser tuned to 486 nm were 
employed for the measurements. A third laser pulse ionized the metastable 23S, Ps, the 
e+  being extracted into a microchannel plate single-particle detector. At peak 
sensitivity, an average of one count is detected for every five laser pulses. 

The advantage of two-colour, two-photon (2C2P) experiments is that it is possible 
in principle to probe regions of the two-photon absorption near intermediate 
resonances. Sensitivity in the resonance and 'pre-resonance' regions should be orders- 
of-magnitude greater than in an ordinary two-photon absorption experiment using 
two equal frequencies (see Section 5). However, Doppler-free absorption, one of the 
important aspects of one-colour, two-photon experiments, cannot be obtained in a 
counter-propagating 2C2P absorption experiment, since there is no way to adjust the 
experimental wavevectors k so that the sample-averaged k,  * v and k, * v cancel 
(Levenson 1982). For the direct study of the 1s-nS transitions in Ps, this would have to 
be accomplished with four-photon spectroscopy, though there are a number of three- 
photon options where the excited states of Ps can be studied under Doppler-free 
conditions. Barring these higher-generation experiments, one can find other ways of 
reducing the Doppler broadening (Demtroder 1982). The main disadvantage of the 
2C2P technique is the current unavailability of far-infrared lasers or masers, though it is 
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Two-photon transitions in positronium 309 

Figure 1. Logl,FlS$2 as a function of v1 over the range 0.6168 x lo6 to 1.2168 x lo6 GHz, in 
units of 1500 GHz. Upper curve, 13S1-23S1; lower curve, 13S,-33S1, showing prominent 
DIP at 1.144 x lo6 GHz. Note that the DIP affects the absorption intensity of 13S,-33S1 
over the entire range. 

not unreasonable to expect that light sources for these types of experiments will be 
available in the near future (Demtroder 1982). 

In order to act as a guide for future multi-photon transitions in Ps, Quattropani and 
Bassani (1983) outlined some general results expected for the intensities of 2C2P 
absorption transitions, 13S1-23S, and 13S,-33S1, as a function of the frequency of one 
photon. No specific effects of linewidths on the two-photon resonances were included 
in these calculations. The inclusion of linewidth effects is a straightforward extension of 
their work and reveals some unexpected features (see figure 1). 

3. Gauge optimization 
A recent paper by Tung et  al. (1984), using results of Kelsey and Macek (1976), 

presented methods by which two-photon emission probabilities in H-like atoms can be 
calculated analytically. Specifically, the infinite summations over intermediate states 
can be expressed as repeated parametric differentiations of hypergeometric functions. 
Except for transitions with small n, these calculations become impractical, and a useful 
extension to more complex atoms or molecules would seem hopeless. However, for the 
calculations to be described here, Tung et al. found that little computer time is needed 
to obtain accurate two-photon decay rates for 2s-1s and 3s-1s emission. 

As an alternative to the above analytical method, a gauge-optimized theory has been 
introduced (Brown and Robinson 1984). In this theory, a sum over only a few 
intermediate bound states is required, and the continuum states can be ignored 
altogether. An extensive amount of two-photon intensity data can thus be obtained 
quickly and accurately by these methods. For example, a gauge-optimized calculation 
(Robinson 1982) of the 1s-2s two-photon transition in H was found to give 
results having better than 0.5% accuracy over the entire laser frequency range, 

Though there are an infinite number of gauge representations, gauge as used here 
means the use of either E * r or A * p perturbation operators (Power 1965) in the matter- 
radiation interaction. The two operators are equivalent providing exact matter 
eigenfunctions and exact field eigenfunctions are employed. In particular, the use of the 
semi-classical matter-radiation hamiltonian (Lamb 1952, Yang 1976) is an approxi- 
mation that destroys the equality of the two gauge forms. 

fr(E,-Ei)<hv, < ( E f - E i ) .  
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310 G. W Robinson and A .  Quattropani 

The E * r and A * p hamiltonians are related through a unitary gauge transformation 
employing the specific generating function of Goppert-Mayer (193 1). This ‘gauge 
transformation of the first kind’ (Pauli 1941) is carried out completely within the 
Coulomb gauge, V * A = 0. In the work of Brown and Robinson (1984), the equivalence 
of the hamiltonians, not only for the pure E * r and A p forms, but also for continuous 
mixtures of these forms, was proved, starting either with the classical lagrangian density 
(Power 1965) or with the purely quantum-mechanical hamiltonian in second 
quantization form (Aharonov and Au 1979). 

In these velocity-dependent hamiltonians, the gauge transformation shifts momen- 
tum between the field and the matter in the interaction operator. It redefines the 
generalized coordinate system within the framework of ordinary classical canonical 
transformations (Goldstein 1953). In the E - r  gauge, for example, the velocity 
dependence of the interaction lies in the field (E = - aA/at), while in the A * p gauge it 
resides in the matter (v = dr/dt). In fact, the intermediate-gauge-form lagrangian 
density, from which the quantized hamiltonian is derived, can be written as a linear 
combination of the two extreme forms, 

&=(1-t)hJ+tL, (1) 
where Lo refers to A - p, L ,  to E - r, and 5 is any real number 0 < 5 < 1. Such a trivial 
representation is not possible for the hamiltonians. 

The method of gauge optimization is to determine the best gauge parameter I: for a 
given set of approximate eigenstates for the matter. The basic goal is the improvement 
of the full matter-radiation eigenfunction, as opposed to the conventional procedure of 
optimizing the matter eigenstates alone then using a fixed gauge form, either E - r or 
A p, for matter-radiation interaction calculations. When the approximate eigenfunc- 
tions are chosen so that they share a common basis with the true eigenfunctions (Hartree- 
Fock functions do not qualify), then the exact result seems to lie in the range 0 < t < 1. 
Upper and lower bounds are thereby set. (These last two statements have not been 
proved rigorously, however.) In simple cases, such as the H i  molecular ion, the 
optimization procedure can be performed by an extended variational method (Brown 
and Robinson 1984). 

For one-photon absorption in H, the matter eigenfunctions are known exactly and 
further optimization is not required. However, for two-photon absorptions, the field of 
the ‘first’ photon perturbs the electronic states of the atom. A state of the perturbed 
atom becomes a mixture of the complete set of states of the system, discrete and 
continuous, requiring infinite sums and integrals to be evaluated. When this set of states 
is not known, or when it is impractical to carry out the full summation process, gauge 
optimization can be used to reduce or eliminate the importance of the missing 
knowledge. 

4. Two-photon probabilities 
Great care must be exercised when attempting to compute absolute transition 

probabilities of two-photon absorption or emission, including Raman 
scattering. An excellent description of this procedure has been set down by Craig and 
Thirunamachandran (1984). Their results will be adopted here, except that, to deal with 
intermediate state resonances, damping is included. This formalism has recently been 
described by Bonin and McIlrath (1984) in their presentation of two-photon, electric- 
dipole selection rules for atoms. 
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Two-photon transitions in positronium 31 1 

The starting point is to write down the basic equation for the probability per unit 
time (transition rate) for two-photon absorption from two statistically independent 
beams for N absorbers, 

where &=(nj )cho jV- '  (Jm-,s-' ), ( n j )  being the averaged single mode (k,1) 
occupation number for wavevector k and polarization 1 in beam j having quantization 
volume 3 j=2nhqp(ho j )c - '  ~ & ( c A v ~ ) - ~ ,  the radiant energy density of beam j per 
unit frequency interval (J m-3 Hz- '); p ( h o j )  (J-') is the density of field states and Avj is 
the laser linewidth; h is Planck's constant divided by 2n, c is the velocity of light in 
vacuum, and E,, is the permittivity in free space. Multiplying (2) by ( 4 7 ~ ~ ~ ) ~  transforms 
the equation to c.g.s. units. Near an intermediate state resonance, dephasing occurs, 
and the 'sequential' part must be treated as two independent one-photon absorptions. 

In (2), the amplitude function, 

(where i, f represent initial and final states, respectively, and y, is the half-width of an 
intermediate state r), has been spatially averaged over random dipole orientations, 
though for spherically symmetric atoms this may be considered merely a formal device; 
( lSfiJ2) then separates into two distinct tensor contributions, one describing the 
polarizations (j, k)  of the two beams, the other a tensor of the dipole matrix elements p. 
The spatial averaging procedure is described in detail in the book by Craig and 
Thirunamachandran ( 1  984). Their molecular icosahedral symmetry example applies to 
two-photon transitions in atoms, IAFI < 2, F representing the total angular momentum. 

5. Application to positronium 
Following Quattropani and Bassani (1983), a constant e2ub2a'-' is factored out of 

Sfi to make it dimensionless. The new amplitudes S,S, are then identical for Ps and H 
(Bassani et al. 1977). The primes here denote the Ps Bohr radius (2a0) and the Ps 
Rydberg energy (+a), respectively, while e is the electronic charge. For S, -S, two- 
photon transitions in atoms, zz-ploarization can be assumed without losing generality, 
in which case spatial averaging contributes an additional factor of 9 (i.e. $ for the 
overall average) to (2). Since linewidth contributions from 3y annihilation are 
negligible, natural radiative widths, half those for H (Bethe and Salpeter 1957), are used 
in (3). 

Gauge optimization for Ps, as for H, requires the addition of a sum-completing term 
to Sfi. This term takes the form of an average energy contribution (Robinson 1982), but, 
unlike conventional approximations of this kind, gauge invariance is preserved 
through a special sum rule (Dirac 1947). Discrete intermediate states up to and 
including n,,, = 4 are employed, and as in H (Robinson 1982) the average energy value 
for nmax=4 is taken to be +0*174B' for 13S,-23S, and +0-0839'  for 13S,-33S,. 

Results are presented in the table and figures 1-3. An interesting feature in the 1 3S,- 
3 3 s ,  transition (figure 1 )  is a destructive interference profile (DIP) (Robinson and 
Auerbach 1981) just below the 2P resonance region caused by nearly complete 
cancellation of the sum over states. Without the linewidth term, cancellation would 
have been complete. This type of feature, on the long wavelength side of the lowest 
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312 G. W Robinson and A.  Quattropani 

Calculated two-photon amplitudes and probabilities.? 

6.168(14)$ 
6.468 
6768 
7068 
7.3114 
7.668 
7.968 
8.268 
8.568 
8.868 
9.168 
9.468 
9.768 
1-007 (1 5) 
1.037 
1.067 
1.097 
1.127 7 
1.157 
1.187 
1-217 

- 2.357 (1) 
- 2.364 
-2.386 
- 2.424 
- 2.467 
- 2.552 
- 2.646 
- 2.766 
-2'915 
-3.101 
- 3.334 
- 3.629 
- 4.006 
- 4497 
-5.158 
- 6.078 
- 7.432 
- 9.590 
- 1.350(2) 
- 2.257 
- 6.450 

1.370(-5) 
1.379 
1.405 
1.450 
1.501 
1.606 
1.727 
1.887 
2.096 
2.373 
2.743 
3.248 
3.958 
4.990 
6.562 
9.1 14 
1.363 ( - 4) 
2.269 
4.498 
1.257(-3) 
1.026(-2) 

- 6.495 (0) 
- 6.465 
- 6.442 
- 6.428 
- 6.425 
- 6.432 
- 6.450 
- 6.476 
- 6.508 
- 6.540 
- 6.565 
- 6.569 
- 6.530 
- 6.409 
-6.137 
- 5.584 
- 4.485 
- 2.240 
+ 2.774 
+ 1.656 (1) 
+ 8-893 

1.041 (- 6) 
1.03 1 
1.024 
1.019 
1.018 
1.021 
1.026 
1.035 
1.045 
1.055 
1.063 
1.065 
1.052 
1.013 
9.291(-7) 
7.692 
4963 
1.238 
1.899 
6.761 (- 6) 
1.951 (-4) 

?The imaginary parts of S; are negligible throughout this frequency range. Numbers in 
parentheses refer to powers of 10 by which the data point and subsequent entries are to be 
multiplied. Absorption probabilities are proportional to 9 lSglz. 

$ 1  3S1-23S1 half-resonance frequency. 
9 1 3S1-33S, half-resonance frequency. 
7 13S1-33S, DIP frequency= 1.144 x 106GHz. 

Figure 2. Real part of amplitude function S g  for 13S,-23S, in the 23P resonance region. The 
frequency range is 1 233 576.5 to 1 233 601.5 GHz, in units of 0.05 GHz. The ordinate scale 
has been reduced by a factor of 1 x lo4. The resonances from left to right correspond to 
3P,, 3P1 and 3Pz. The amplitude function for 13S1-33S, in this same region is similar 
except (1) the sign is reversed, and (2) the absolute magnitudes are about 554 x smaller 
throughout. The 33P resonance of this latter transition has the same sign as the 23P 
resonance of 13S1-23S,, but is larger by a factor of about 3.0 to 3.5; and, of course, the 
energy splittings correspond to the 33P fine structure. 
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Two-photon transitions in positronium 313 

Figure 3. -1m S z  for the 13S,-23S, transition in the z3P resonance region. All else is the same 
as in figure 2. The widths and heights of the resonance peaks of course depend upon 
experimental linewidths, which may be broader than the natural linewidths used in the 
figures. 

resonance, has been discussed in relation to molecular Raman intensities (Berg and 
Robinson 1977, Robinson and Auerbach 1981, Robinson and Brown 1983). It should 
be a common feature in tuned 2C2P absorption, usually as the first intermediate state 
resonance is approached. This zero was previously reported both by Quattropani and 
Bassani (1983) and by Tung et al. (1984), the latter for two-photon emission decays in 
hydrogenic atoms. Because of competition with allowed radiative channels, however, it 
might be difficult to detect DIP spectra except in absorption. 

Connection with the experiments of Chu et al. (1984) is made by considering the 
13S,-23S, transition for equal laser frequencies (0.6168 x lo6 GHz), where 
Si(v, = v2) = -23.569. The constant factor, 9 = (ab4e4)(36ti2c2~~~2)-1, to be applied 
to lSglz for zz-polarization, has a value of 2.4669 x lop8 m4 J-2 .  The width At of the 
‘stretched’, nearly transform-limited, laser pulse used in the experiments was - 40 ns. In 
addition, the number of absorptions per pulse, M ,  is proportional to the length z of the 
Ps-atom burst, - 10 ns. Multiplying all the various factors together, 
N(theor) x N F  IS:12(Av,)- ‘T r z = 32. Here N x 75 Ps-atoms per burst; and assuming 
equal intensity of the pulses, I ,  = l , x ~ P ( A t ) - l ,  where P (Jrn-’ per pulse) corresponds 
to 20-25 mJ per pulse in a - 6-mm-diameter beam. We have also used the fact that 
AvAt x 4/7c for the Fourier transform limited pulse, assumed of gaussian shape 
(Levenson 1982). Agreement with experiment (Chu et al. 1983), J(r(expt)zO.2, is 
satisfactory considering the probable reduced efficiency ( 5  1%) of Ps production and 
detection caused by non-optimum spatial overlap of the Ps-atom bursts and the laser 
pulses, the lower than unit efficiency of the detection train, and other losses. 

-1 2 -  
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